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SUMMARY

 

Reactive oxygen species generated during various metabolic and biochemical reactions have multifar-
ious effects that include oxidative damage to DNA leading to various human degenerative and autoim-
mune diseases. The highly reactive hydroxy radical (·OH) can interact with chromatin and result in a
wide range of sugar and base-derived products, DNA–protein cross-links and strand breaks. Studies
from our laboratory have demonstrated that after modification the DNA becomes highly immunogenic
and the induced antibodies exhibit variable antigen-binding characteristics. Systemic lupus erythema-
tosus, a prototype autoimmune disease, is characterized by the presence of autoantibodies to multiple
nuclear antigens. The detection of 8-hydroxyguanosine in the immune complex derived DNA of sys-
temic lupus erythematosus patients reinforces the evidence that reactive oxygen species may be
involved in its pathogenesis. Increased apoptosis and decreased clearance of apoptotic cells as observed
in systemic lupus erythematosus (SLE) might well be a contributory factor in systemic autoimmunity.
Clinically, titres of autoantibodies are closely related to the degree of renal inflammation. Anti-DNA
antibodies may combine with circulating antigen and contribute to the deposition of immune complexes
in renal glomeruli.
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REACTIVE OXYGEN SPECIES

 

A free radical is any species capable of independent existence
containing one or more unpaired electrons [1]. The unpaired elec-
tron alters the chemical reactivity of the molecule/atom, making it
more reactive than the corresponding non-radical form. The oxy-
gen free radicals include superoxide anion radical (O

 

2

 

·

 

–

 

), singlet
oxygen (

 

1

 

O

 

2

 

), hydroxyl radical (·OH) and perhydroxyl radical
(HO

 

2

 

·) and are termed collectively the ‘reactive oxygen species’
(ROS). The usual route of O

 

2

 

 metabolism is through its complete
reduction to H

 

2

 

O by accepting four electrons. However, with a
single electron reduction several free radicals and hydrogen per-
oxide (H

 

2

 

O

 

2

 

) are formed. 

 

In vivo

 

, ROS are generated by oxidant
enzymes, phagocytic cells, ionizing radiation, etc. Superoxide

anion is believed to be the first radical formed, mainly by the elec-
tron transport chain when O

 

2

 

 picks up a single electron. Radicals
such as ·OH, HO

 

2

 

· and H

 

2

 

O

 

2

 

 are formed from O

 

2

 

·

 

–

 

 [2,3]. O

 

2

 

·

 

–

 

undergoes a dismutation reaction catalysed by the enzyme super-
oxide dismutase (SOD) to form H

 

2

 

O

 

2

 

, which by itself is not reac-
tive enough to cause damage to macromolecules. It is, however, a
very important oxidant since it can cross biological membranes
and form the highly reactive ·OH by interaction with transition
metal ions such as Fe

 

2

 

+

 

 or Cu

 

+

 

.
H
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O
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 is reduced by three general mechanisms. First, it is a sub-
strate for two enzymes, catalase and glutathione peroxidase, that
catalyse its conversion to H

 

2

 

O and O

 

2

 

 [4], a detoxification mech-
anism. Secondly, H

 

2

 

O

 

2

 

 is converted by myeloperoxidase (MPO)
in neutrophils to hypochlorous acid (HOCl), a strong oxidant that
acts as a bactericidal agent in phagocytic cells. Reaction of HOCl
with H

 

2

 

O

 

2

 

 yields 

 

1

 

O

 

2

 

. Thirdly, H

 

2

 

O

 

2

 

 is converted in a spontaneous
reaction catalysed by transition metal ions to the highly reactive
·OH.

HOCl O Cl

O O H O OH H O2 2 2 2 2

Æ +

≠
Æ ◊ Æ Æ ◊ Æ

-

-

1
2

Used Mac Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 595 842 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Average Downsampling     Downsample Resolution: 120 dpi     Downsampling For Images Above: 180 dpi     Compression: Yes     Compression Type: JPEG     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Average Downsampling     Downsample Resolution: 120 dpi     Downsampling For Images Above: 180 dpi     Compression: Yes     Compression Type: JPEG     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Average Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: ZIP     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: Yes     Subset When Percent Of Characters Used is Less: 100 %     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Leave Color Unchanged     Intent: DefaultDevice-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: No     Transfer Functions: Preserve     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: Yes     Illustrator Overprint Mode: No     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: Yes     Log DSC Warnings: No     Resize Page and Center Artwork for EPS Files: No     Preserve EPS Information From DSC: Yes     Preserve OPI Comments: No     Preserve Document Information From DSC: YesOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /LockDistillerParams false     /DetectBlends false     /DoThumbnails true     /AntiAliasMonoImages false     /MonoImageDownsampleType /Average     /GrayImageDownsampleType /Average     /MaxSubsetPct 100     /MonoImageFilter /FlateEncode     /ColorImageDownsampleThreshold 1.5     /GrayImageFilter /DCTEncode     /ColorConversionStrategy /LeaveColorUnchanged     /CalGrayProfile (None)     /ColorImageResolution 120     /UsePrologue false     /MonoImageResolution 600     /ColorImageDepth -1     /sRGBProfile (sRGB IEC61966-2.1)     /PreserveOverprintSettings true     /CompatibilityLevel 1.2     /UCRandBGInfo /Remove     /EmitDSCWarnings false     /CreateJobTicket true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDict << /K -1 >>     /ColorImageDownsampleType /Average     /GrayImageDict << /VSamples [ 2 1 1 2 ] /HSamples [ 2 1 1 2 ] /Blend 1 /QFactor 0.76 /ColorTransform 1 >>     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /ParseDSCComments true     /PreserveEPSInfo true     /MonoImageDepth 1     /AutoFilterGrayImages false     /SubsetFonts true     /GrayACSImageDict << /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] /Blend 1 /QFactor 0.9 >>     /ColorImageFilter /DCTEncode     /AutoRotatePages /None     /PreserveCopyPage true     /EncodeMonoImages true     /ASCII85EncodePages false     /PreserveOPIComments false     /NeverEmbed [ ]     /ColorImageDict << /VSamples [ 2 1 1 2 ] /HSamples [ 2 1 1 2 ] /Blend 1 /QFactor 0.76 /ColorTransform 1 >>     /AntiAliasGrayImages false     /GrayImageDepth -1     /CannotEmbedFontPolicy /Warning     /EndPage -1     /TransferFunctionInfo /Preserve     /CalRGBProfile (sRGB IEC61966-2.1)     /EncodeColorImages true     /EncodeGrayImages true     /ColorACSImageDict << /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] /Blend 1 /QFactor 0.9 >>     /Optimize true     /ParseDSCCommentsForDocInfo true     /GrayImageDownsampleThreshold 1.5     /MonoImageDownsampleThreshold 1.5     /AutoPositionEPSFiles false     /GrayImageResolution 120     /AutoFilterColorImages false     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /OPM 0     /DefaultRenderingIntent /Default     /EmbedAllFonts true     /StartPage 1     /DownsampleGrayImages true     /AntiAliasColorImages false     /ConvertImagesToIndexed true     /PreserveHalftoneInfo true     /CompressPages true     /Binding /Left>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



 

Oxygen free radicals and systemic autoimmunity

 

399

 

© 2003 Blackwell Publishing Ltd, 

 

Clinical and Experimental Immunology

 

, 

 

131

 

:398–404

 

Among the ROS, ·OH is the most potent damaging radical
which can react with all biological macromolecules (lipids, pro-
teins, nucleic acids and carbohydrates). It is extremely reactive
and can lead to formation of DNA-protein cross-links, single- and
double-strand breaks, base damage, lipid peroxidation and pro-
tein fragmentation [5,6]. It may also be generated by ionizing
radiation [7]:
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The cellular generation of ·OH may occur in two steps [8]:

(i) Reduction of H
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 by the Fenton reaction:
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(ii) Interaction of O
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 with H
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 by the Haber–Weiss reaction:
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Among the more susceptible targets of ·OH are polyunsatu-
rated fatty acids. Abstraction of a hydrogen atom from a molecule
of polyunsaturated fatty acid initiates the process of lipid perox-
idation. A hydrogen atom is abstracted from a second molecule,
leading to a new free radical. Protein structure and functions are
also modified by ROS. Metal ion catalysed protein oxidation
results in addition of carbonyl groups, cross-linking and fragmen-
tation. Aldehydes of lipid peroxidation can react with sulphydryl
(cysteine) or basic amino acids (histidine, lysine) affecting their
biological characteristics. Similarly, modification of individual
nucleotide bases, single strand breaks and cross-linking are the
typical effects of ROS on nucleic acids [9].

The damage to DNA by ·OH includes single-strand breaks,
base modifications and conformational changes. Nitrogenous
bases react preferentially with ·OH rather than sugar moiety by
4–6-fold. Thymine and guanine are most susceptible to modifica-
tions followed by cytosine and adenine. Thymine glycol is the
major oxidation product, its presence in urine serves as an indi-
cator of endogenous DNA damage. Cytosine glycols are also
formed which can undergo deamination to form uracil derivatives
that base pair preferentially with adenine, instead of guanine.
Reduction of guanine leads to ring opening forming formami-
dopyrimidine (FAPy) derivative of guanine (FAPyG). Oxidation
leads to the formation of 8-oxo-deoxyguanine (8-oxodG), a major
product. Its measurement in urine is used as a biomarker of
endogenous oxidative DNA damage [10].

ROS generation through normal cellular metabolism and by
exogenous stimulus is a constant problem for which cells have
developed multiple defense mechanisms to survive [11,12]. An
imbalance between free radical generation and sequestration
leads to oxidative stress. ROS are generated by mitochondria
through the electron transport chain as toxic by products of oxi-
dative phosphorylation [13]. In addition, free radical production
and disturbances in redox status can modulate the expression of a
variety of immune and inflammatory molecules [14–16] leading to
inflammatory processes, exacerbating inflammation and affecting
tissue damage [17]. It has been suggested that abnormal immunity
is related to oxidative imbalance [18,19] and antioxidant functions
are linked to anti-inflammatory and/or immunosuppressive pro-
perties [20–22]. Neutrophils, which constitute about 60% of
the circulating leucocytes and are the most abundant cellular

components of the immune system, produce ROS resulting in oxi-
dative damage and inflammation. The phagocytosis of bacteria,
secretion of proteolytic enzymes and immunomodulatory agents
are accompanied by ‘respiratory burst’, involving a sudden
increase in oxidative metabolism that results in the production of
ROS [23].

 

SYSTEMIC AUTOIMMUNE DISORDERS

 

In some autoimmune diseases, such as Goodpasture’s syndrome,
antibodies are directly related to pathogenesis of the disease, but
in many instances the relationship between the disease and prev-
alent autoantibodies is vague. The diseases may be organ-specific,
such as diabetes, autoimmune thyroiditis, Goodpasture’s syn-
drome and primary biliary cirrhosis or systemic, such as progres-
sive systemic sclerosis (PSS, scleroderma) and systemic lupus
erythematosus (SLE). Damage due to inflammatory processes is
seen more often in systemic diseases than organ-specific disease.
With systemic diseases, inflammation is associated with vasculitis,
skin rash, swelling of joints, cutaneous ulceration, peripheral gan-
grene, neuropathy and visceral abnormalities. These clinicopatho-
logical features define a group of diseases that over the years have
come to be known as collagen-vascular diseases, immunological
diseases of the connective tissue or rheumatic diseases [24].
Mixed connective tissue disease (MCTD) was first presented as a
distinct rheumatic disease syndrome characterized by high titres
of antibodies specific to a ribonucleoprotein (anti-RNA antibod-
ies) and the clinical features were similar to that of other defined
connective tissue diseases. The most common clinical feature
were Raynaud’s phenomenon, puffy hands, arthritis and myositis,
also characteristic of other connective diseases. The MCTD
patients also have positive rheumatoid factor and high serum lev-
els of immunoglobulins, suggesting an abnormal humoral immune
response [25,26].

In systemic autoimmune diseases, individuals develop autoan-
tibodies directed against a variety of cellular components. It is
remarkable that a particular set of autoantibody specificities is
associated with each disease. Hence, these autoantibody profiles
constitute a useful and valuable tool in their diagnosis. Some of
these autoantibody specificities show a unique disease-restriction
such as the anti-Sm autoantibody found exclusively in the sera of
SLE patients. Other specificities show a broader association, such
as anti-U1 RNP antibody found in high titres in patients with
MCTD and in low titres in SLE [27]. This clinical and serological
heterogeneity has been identified and characterized in detail that
is associated with specific autoantibodies. Thus, antibodies to
DNA have been linked closely to nephritis. Antibodies to U1
RNP are found in SLE without nephritis and the overlapping syn-
drome of scleroderma, myositis, SLE or MCTD. Antibodies to
histone are associated with drug-induced lupus erythematosus
and antibodies to Ro (SSA) are related to cutaneous lupus
erythematosus, neonatal lupus erythematosus, SLE–Sjogren’s
syndrome overlap, antinuclear antibody (ANA) negative SLE
and Sjogren’s syndrome (Table 1) [28].

Manifestations of autoimmunity are often complex and het-
erogeneous. It has been postulated that immune response against
host antigens could result from genetic predisposition, exagger-
ated random B cell activity, cross-reactivity between foreign and
host antigens. The foreign antigens arise as a consequence of
infection, inflammation, drug administration, environmental
factors, free radicals [29–35] and scores of other modifying
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agents. ROS have gained considerable interest in recent years as
plausible causative agents in the pathogenesis of several human
degenerative diseases [36]. The ·OH is generated in substantial
amounts in chronic inflammatory conditions due to increased oxi-
dative stress. Lymphocytes isolated from patients suffering from
rheumatoid arthritis (RA) and SLE contain increased levels of 8-
oxodG [37,38]. A study on blood monocytes isolated from SLE
patients indicated an impairment in the removal of 8-oxodG from
cellular DNA due to a deficient repair system, that may result in
cell death and release of oxidized DNA. ROS have been known to
cause damage to DNA and their relevance in the induction and
development of cancer is well documented [39–42]. These radicals
have also been implicated as causative agents of ageing [43] and
of several human diseases including multiple sclerosis, Parkin-
son’s disease and autoimmune disorders [44–46]. It has been pro-
posed that in chronic inflammatory diseases such as RA and SLE,
DNA–anti-DNA antibody complex(es) deposit in tissues and
induce inflammation [47]. The phagocytic cells may then release
ROS at the site of injury [48]. These oxygen species being highly
reactive may penetrate cellular membranes and react with
nuclear DNA [49,50].

 

HUMORAL AUTOIMMUNITY

 

Two diseases that have been considered prototypes for systemic
autoimmunity are SLE and RA. SLE is a multi-systemic disorder
characterized by a variety of autoantibodies and abnormal lym-
phocyte function that may be responsible for many of the clinical
manifestations that are important in diagnosis. A hallmark of this
disease is the presence of antinuclear antibodies. ANA are pro-
totype autoantibodies that mark the course of rheumatic diseases.
These antibodies target a diverse range of macromolecules
including DNA, RNA, proteins and protein–nucleic acid com-
plexes. Because of the close association between ANA and
clinical diagnosis, these antibodies have become a key component
in the evaluation of patients [51]. While antibodies to single-
stranded DNA are formed in several inflammatory conditions
including RA, antibodies to double-stranded DNA serve as an
immunochemical marker in the diagnosis of SLE [52]. Antibodies
to DNA have been associated particularly with SLE, which is con-
sidered to be a prototype autoimmune disease [53,54]. Serum
obtained from SLE individuals have been shown to possess anti-
DNA antibodies of diverse antigenic specificity [55–58]. These
anti-DNA autoantibodies have been used to evaluate therapeutic

effects and clinical features of SLE patients. Native DNA is no
longer regarded as the antigen initiating the disease mainly
because immunization with nDNA does not produce SLE-like
symptoms. A few of the possible candidates could be polynucle-
otides, denatured DNA, RNA or modified DNA [59] (Table 2).

It is reported that anti-DNA antibodies found typically in
SLE have a greater capacity to bind to ROS-modified DNA [60]
(Table 3). Recent studies from our laboratory have demonstrated
that after modification with ROS, DNA becomes highly immuno-
genic and the induced antibodies exhibit variable binding to
native DNA [61–63]. Blount 

 

et al

 

. have postulated ROS-modified
DNA as a more discriminating antigen for the diagnosis of SLE
[64,65]. Monoclonal anti-DNA antibodies react more strongly
with denatured DNA than nDNA [66–68]. It has been proposed
that ROS generated 

 

in vivo

 

 can cause DNA damage, thus altering
its structure and immunogenicity, resulting in the antibodies cross
reactive to nDNA [60]. The detection of 8-oxodG, a marker of
oxidative DNA damage in the immune complex derived DNA of
SLE reinforces the evidence that ROS may be involved in its aeti-
ology [37].

 

CELLULAR AUTOIMMUNITY

 

The production of autoantibodies in certain autoimmune diseases
has been attributed to the selective stimulation of autoreactive B
lymphocytes by self-antigens or cross-reaction of antigens with
self [69]. In autoimmune prone individuals, B lymphocytes are
hyperresponsive to various polyclonal activators (such as viruses,
drugs) that bypass the T cell regulatory mechanism. These and
several other factors cause immune dysfunction, leading to poly-
clonal B cell activation [70]. B cell proliferation in SLE has been
suggested to be T cell-dependent and the persistence of autore-
active B and T lymphocytes is thought to be responsible for
hypergammaglobulinaemia and autoantibody production [71].

A major mechanism by which undigested, intact nuclear anti-
gens are generated and released 

 

in vivo

 

 is by the process of ‘pro-
grammed cell death’ (PCD), or apoptosis. It is characterized by
the ordered digestion of nuclear chromatin yielding intact oligo-
nucleosomes that are released into the extracellular matrix.

The immune system represents a prototype for complex
multi-cellular organs where during infection antigen-specific lym-
phocytes need to rapidly proliferate. After clearance of the infec-
tious microbes, lymphocytes need to die in order to prevent

 

Table 1.

 

Antibodies associated with systemic autoimmune diseases

Antibody Antigen Disease

Antinuclear antibody Nuclear antigens (dsDNA, ssDNA, histone, Sm, RNP, SS-A/Ro, SS-B/La) SLE
Antinuclear antibody Nuclear antigens (RNP, 70 kDa protein) MCTD
Antinuclear antibody Nuclear antigens (DNA, PM1, Jo-1) Polymyositis, Dermatomyositis
Antinuclear antibody Nuclear antigens (SS-A/Ro, SS-B/La) Sjogren’s syndrome
Antinuclear antibody Nuclear antigens (nucleolar DNA, RNP, Scl70) PSS
Rheumatoid factor (RF, anti-Fc) Fc portion of IgG RA
Antibodies to platelets Platelet membrane antigens SLE
Antibodies to RBC Red blood cell antigens SLE

SLE: systemic lupus erythematosus, PSS: progressive systemic sclerosis, Sm: Smith antigen. MCTD: mixed connective tissue disease, RA: rheumatoid
arthritis, RNP: ribonucleoprotein, SS-A/Ro: Sjogren’s syndrome antigen A/Robert antigen, SS-B/La: Sjogren’s syndrome antigen B.
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unregulated proliferation. It is therefore evident that the control
of apoptosis is critical for the homeostasis of the immune system.

Many signals that may originate either endogenously or exog-
enously have been shown to influence life processes. These
include hormones, immune killing, ROS, genetic and physical
trauma, oncogene expression, etc. The execution of PCD is often
associated with characteristic morphological and biochemical
changes. Apoptotic hallmarks include membrane blebbing, cell
shrinkage, chromatin condensation, DNA cleavage and fragmen-
tation, etc. [72]. During apoptotic breakdown many nuclear con-
stituents are post-translationally modified altering antigenicity. It
is therefore speculated that failure to achieve PCD and clear apo-
ptotic cell fragments may be a key pathological factor leading to
autoimmune disorders. Autoimmunity could result from a failure
to kill an autoreactive cell or by inducing autoimmunity against
apoptotically modified cellular constituents. Therefore, the pro-
cess of apoptosis may provide a source of nuclear antigens to
drive the autoantibody response and provide antigens in SLE
[73]. The serological hallmark of SLE, the appearance of antinu-
cleic acid autoantibodies suggests a polyclonal B cell activation.

The aetiopathogenesis of lupus, which is still not fully understood,
is a multi-factorial one involving environmental factors; drugs,
infectious agents, chemicals, free radicals may lead to a profound
alteration of the immune system. Changes in the immune system
include the appearance of different autoantibodies with differ-
ent specificity, altered T cell function, defective phagocytosis,
etc. Reports have suggested that apoptosis is abnormal in
autoimmune diseases and may play a role in the induction of
autoimmunity.

Studies on apoptosis and clearance of apoptotic cells in lupus
have shed light on the development and course of the disease.
During maturation of the immune system, apoptosis of autoreac-
tive lymphocytes in the central lymphoid organs underies the
development of tolerance. Whenever apoptotic cells accumulate
by an increased rate of apoptosis, decreased elimination or both,
tolerance can be broken. Disturbances in any one of the many fac-
tors that regulate the apoptotic process might change the balance
in the immune system and may predispose for the development of
autoimmune phenomenon [74]. Levels of apoptotic lymphocytes
are higher in SLE patients than normal healthy individuals [75]. It
has been observed that even during inactive disease, increased
amount of activated T and B cells are found in the peripheral
blood of these patients [76] and during exacerbations, lymphocyte
activation is further increased [77]. The increased presence of
apoptotic cells as demonstrated in the peripheral blood of SLE
patients can be accounted for by an increased level of activation-
induced cell death [78]. Adequate removal of apoptotic cells
therefore also seems important for the prevention of excessive
autoantigen exposure. Evidence that abnormal phagocytosis of
apoptotic cells might be a relevant factor in the development of
autoimmune diseases has been shown [79].

One of the mechanisms by which elimination of autoreactive
lymphocytes takes place is PCD, and a defect in apoptosis may
thus contribute to the development of autoimmune diseases [80].
An increased rate of apoptosis has been demonstrated in lympho-
cytes from SLE patients 

 

in vitro

 

 [81]. During the process of apo-
ptosis, the release of excessive quantities of intact nucleosomes

 

Table 2.

 

Antigenic specificity of anti-ROS-DNA monoclonal antibody

Inhibitor
Max % inhibition

at 20 

 

m

 

g/ml % relative affinity

400 bp ROS-DNA 76·5 100
ROS-DNA 84 146·6
200 bp ROS-DNA 59·7 44
Native DNA 65·1 40
UV treated 400 bp DNA 35·9 –
Poly(dT) 34·8 –
ROS-poly(dT) 68·2 122·2
Poly(G) 27 –
ROS-poly(G) 47·2 –

Adapted from Ashok and Ali [39].

 

Table 3.

 

Inhibition of SLE antibody binding to native DNA and ROS-
DNA fragments of varying size

Size of DNA

% Inhibition 

Native DNA ROS-DNA

Native DNA 60 75
800 base pair 58 76
600 bp 55 78
300 bp 65 72
200 bp 50 70
120 bp 60 72
70 bp 30 55
50 bp 30 50
Mean 51 68·5
SD

 

±

 

12·9

 

±

 

9·6

Adapted from: Ara J, Ali R. Reactive oxygen species modified DNA
fragments of varying size are preferred antigen for human anti-DNA
autoantibodies. Immunol Lett 1992; 

 

34

 

:195–200.

 

Fig. 1.

 

Possible role of ROS in systemic autoimmunity.
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may be a source of nuclear antigens that drives an immune
response, inducing anti-DNA and antihistone antibody produc-
tion. These observations imply that a failure of mechanism
regulating the physiological clearance of apoptotic cells may con-
tribute to the generation and maintenance of chronic autoim-
mune diseases [82–84]. There is convincing evidence that in the
sera of SLE patients, circulating DNA does not exist in free form
but as multimeric complexes of different sizes bound to histones
[85]. Such nucleosome-like particles are a major immunogen for
pathogenic autoantibody response [86,87] and their complexes
with autoantibodies can induce renal lesions by binding to glom-
erular capillary walls [88].

Collagen and fibronectin deposition and the composition of
inflammatory infiltrate in the skin as well as quantitative and func-
tional T cell deficiency in peripheral blood lymphocytes in PSS
have been demonstrated [89]. PSS is a systemic rheumatic disease
that has been shown to contain autoantibodies to nucleolar and
intranuclear components [90]. Garg and Ali have demonstrated
the presence of autoantibodies against native and ROS-poly(G)
in the sera of SLE and PSS patients [91]. Anti-cardiolipin anti-
bodies may be involved in the pathogenesis of PSS by causing vas-
cular damage through the inhibition of prostacyclin production in
vascular endothelium [92].

The origin of autoantibody remains an enigma and the pro-
duction of anti-DNA antibodies is even more complicated. Even
though nucleic acid antigens are by themselves poorly immuno-
genic, their antigenicity can be enhanced by modification with
agents such as ROS. Autoantibodies produced against such mod-
ified conformations is the hallmark of the systemic human disease,
SLE. B cell hyperactivity and the production of pathogenic
autoantibodies are the main immunological events in the patho-
genesis of SLE. One approach to study the pathogenesis of this
disease and how the autoantibody response is initiated and sus-
tained is to analyse variable genes expressed by antibodies that is
the trademark of the disease causing pathogenic autoantibodies.
Quantification of this repertoire has revealed the presence of a
specific expansion of IgG clonotypes that impart reactivity with
disease related autoantigens [93]. The nucleotide sequence of
autoantibodies derived from human lupus present in immune
complex(es) and renal eluates of subjects with active disease show
features of diversification with a high rate of replacement or silent
mutations and the clustering of mutations in the hypervariable
regions. These characteristics imply that a pure polyclonal activa-
tion cannot be the only mechanism responsible for autoantibody
production [94]. An antigen-driven process is more likely to play
a role in their generation. It has been suggested that the antibody
may be stimulated by nucleic acid antigens [95,96] or pathogens
[97,98]. B cells whose paratopes have complementary determin-
ing regions which are formed by amino acids that can promote
DNA binding may be selectively stimulated by nucleic acid
related structures.

 

CONCLUSIONS

 

The mechanism of autoantibody production in diseases such as
SLE has not yet been identified. If antigen selection is an impor-
tant aspect of differentiation, the nature of the stimulating anti-
gen also remains to be determined. The origin of antibodies
remains obscure, although modified DNA appears to be a caus-
ative factor in RA and SLE. It is possible that the consequent pro-
duction of autoantibodies may be the result of ROS attack on

DNA, causing changes in structure at the macromolecular level. It
is therefore postulated that in chronic inflammatory diseases,
ROS generated by phagocytic cells may cause damage to DNA
and autoantibodies to a self-antigen are produced. Alternatively,
a defect in the control of apoptosis and delayed clearance of apo-
ptotic cells provide sustained interaction between oxygen free
radicals and apoptotic cell macromolecules including DNA, gen-
erating neoepitopes which subsequently results in autoimmunity
and generation of polyspecific autoantibodies (Fig. 1). It has been
shown in our laboratory that damage of double-stranded DNA or
DNA fragments by ROS results in an increased binding of human
anti-DNA autoantibodies.

It has now been established clearly that not only oxygen but
also nitrogen free radicals play an important role in the patho-
genesis of several human diseases. Reactive nitrogen species is
produced by the reaction of nitric oxide with O
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 or peroxide.
Nitric oxide radical participates in some pathological conditions
such as arthritis, autoimmune diseases, vasculitis, asthma, hyper-
tension, etc. It is also an unstable molecule, like ROS but less
reactive, and can react with proteins O
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 and O
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